<u>Guía Matemática</u> Tercero Medio

Nombre:	Curso:3°
Nombre Profesor:	Fecha

OBJETIVO: OA 2. Mostrar que comprenden las relaciones entre potencias, raíces enésimas y logaritmos:

- comparando representaciones de potencias de exponente racional con raíces enésimas en la recta numérica
- convirtiendo raíces enésimas a potencias de exponente racional y viceversa
- describiendo la relación entre potencias y logaritmos
- resolviendo problemas rutinarios y no rutinarios que involucren potencias, logaritmos y raíces enésimas.

Raíz cuadrada de un número real

• La raíz cuadrada de **a** se representa por $\sqrt[2]{a}$, $a\geq 0$

Aquí, 2 es el índice de la raíz, y \boldsymbol{a} es la cantidad sub-radical o radicando. Cuando el índice toma el valor 2, no es necesario escribirlo

Así escribimos, \sqrt{a} en vez de $\sqrt[2]{a}$

La operación raíz está estrechamente relacionada con las potencias, de la siguiente forma:

$$\sqrt[n]{a} = b \leftrightarrow b^n = a$$

Ejemplos:

1.-
$$\sqrt{81} = 9 \iff 9^2 = 81$$

2.-
$$\sqrt{\frac{25}{16}} = \frac{5}{4} \iff (\frac{5}{4})^2 = \frac{25}{16}$$

$$3.-\sqrt{0}=0 \iff 0^2=0$$

Ejercicios:

4.-
$$\sqrt{16} \neq -4$$
, aunque $(-4)^2 = 16$, $-4 < 0$
1.- $\sqrt{121} =$

$$2.-\sqrt{\frac{169}{9}}=$$

$$3.-\sqrt{576} =$$

Escriba la siguiente raíz como potencia

4.-
$$\sqrt{225} = 15$$

Propiedades de las raíces

1.- Multiplicación de raíces de igual índice

El índice común se mantiene, las cantidades sub-radicales se multiplican.

Ejemplos:

1.
$$\sqrt[3]{6} \cdot \sqrt[3]{2} = \sqrt[3]{6 \cdot 2} = \sqrt[3]{12}$$

$$5\sqrt{3} \cdot 4\sqrt{2} = 5 \cdot 4\sqrt{3 \cdot 2} = 20\sqrt{6}$$

2.- División de raíces de igual índice

El índice común se mantiene, las cantidades sub-radicales se mantienen.

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

Ejemplos:

$$\frac{\sqrt{6}}{\sqrt{18}} = \sqrt{\frac{6}{18}} = \sqrt{\frac{1}{3}} \qquad \frac{\sqrt[3]{40}}{\sqrt[3]{5}} = \sqrt[3]{\frac{40}{5}} = \sqrt[3]{8} = 2$$

Problema:

De las siguientes expresiones, ¿cuál equivale a

$$(\sqrt{50} + \sqrt{512} - \sqrt{242}): \sqrt{2}$$

- a) 10
- **b)** $10\sqrt{2}$
- c) $8\sqrt{5}$
- **d)** 32
- e) 40

Solución:

$$(\sqrt{50} + \sqrt{512} - \sqrt{242}) : \sqrt{2} = (\sqrt{50} + \sqrt{512} - \sqrt{242}) \cdot \frac{1}{\sqrt{2}}$$

$$= \frac{\sqrt{50}}{\sqrt{2}} + \frac{\sqrt{512}}{\sqrt{2}} - \frac{\sqrt{242}}{\sqrt{2}} \qquad \text{(distributividad)}$$

$$= \sqrt{\frac{50}{2}} + \sqrt{\frac{512}{2}} - \sqrt{\frac{242}{2}} \qquad \text{(división de raíces de igual índice)}$$

$$= \sqrt{25} + \sqrt{256} - \sqrt{121}$$

$$= 5 + 16 - 11$$

$$= 10$$

Alternativa correcta: a)

Problema:

Al desarrollar $\sqrt{35} \cdot \left(\sqrt{\frac{5}{7}} - \sqrt{\frac{7}{5}}\right)$

- a) -24
- **b)** -2
- **c)** 0
- **d)** 12
- e) 74

Solución:

$$\sqrt{35} \cdot \left(\sqrt{\frac{5}{7}} - \sqrt{\frac{7}{5}}\right) = \sqrt{35} \cdot \sqrt{\frac{5}{7}} - \sqrt{35} \cdot \sqrt{\frac{7}{5}} \quad \text{(distributividad)}$$

$$= \sqrt{35 \cdot \frac{5}{7}} - \sqrt{35 \cdot \frac{7}{5}} \quad \text{(raiz de un producto)}$$

$$= \sqrt{\frac{35 \cdot 5}{7}} - \sqrt{\frac{35 \cdot 7}{5}}$$

$$= \sqrt{5 \cdot 5} - \sqrt{7 \cdot 7} \quad \text{(simplificando)}$$

$$= 5 - 7$$

$$= -2$$

Alternativa correcta: b)

3.- Raíz de una raíz

$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[n-m]{a}$$

La cantidad sub-radical se mantiene, los índices se multiplican.

Ejemplos:

$$\sqrt[3]{\sqrt[5]{7}} = \sqrt[3.5]{7} = \sqrt[15]{7}$$

$$\sqrt[4]{\sqrt[3]{2xy}} = \sqrt[4.2.3]{2xy} = \sqrt[24]{2xy}$$

Técnicas de transformación

1.- Descomposición de raíces.

- Es una aplicación de la multiplicación de raíces de igual índice.
- Se utiliza para descomponer "raíces inexactas", buscando al menos un factor que tenga raíz exacta.

Ejemplos:

$$\sqrt{50} = \sqrt{25 \cdot 2} = \sqrt{25} \cdot \sqrt{2} = 5\sqrt{2}$$

$$7\sqrt[3]{40} = 7\sqrt[3]{8 \cdot 5} = 7\sqrt[3]{8} \cdot \sqrt[3]{5} = 7 \cdot 2 \cdot \sqrt[3]{5} = 14\sqrt[3]{5}$$

Aplicación

La expresión $4\sqrt{8} - 2\sqrt{2} + \sqrt{32}$ equivale a:

- a) $4\sqrt{6}$
- b) $10\sqrt{2}$ c) 30
- d) $30\sqrt{2}$
- e) Otro valor

Solución:

$$4\sqrt{8} - 2\sqrt{2} + \sqrt{32} = 4\sqrt{4 \cdot 2} - 2\sqrt{2} + \sqrt{16 \cdot 2} \qquad (8 = 4 \cdot 2 \text{ y } 32 = 16 \cdot 2)$$

$$= 4\sqrt{4} \cdot \sqrt{2} - 2\sqrt{2} + \sqrt{16} \cdot \sqrt{2} \qquad \text{(descomponiendo)}$$

$$= 4 \cdot 2 \cdot \sqrt{2} - 2\sqrt{2} + 4 \cdot \sqrt{2}$$

$$= 8\sqrt{2} - 2\sqrt{2} + 4\sqrt{2}$$

$$= 10\sqrt{2}$$

Alternativa correcta: b)

2.- Composición de raíces

$$a \cdot \sqrt[n]{b} = \sqrt[n]{a^n \cdot b}$$

- Es una aplicación de la raíz de un producto.
- Se utiliza para reducir el producto de un número por una raíz, a una expresión equivalente que contiene sólo una raíz.

Ejemplo:

$$3\sqrt{5}=\sqrt{3^2\cdot 5}=\sqrt{9\cdot 5}=\sqrt{45}$$

$$4\sqrt[3]{7} = \sqrt[3]{4^3 \cdot 7} = \sqrt[3]{64 \cdot 7} = \sqrt[3]{448}$$

Aplicación:

Expresar
$$\sqrt{5\sqrt[3]{2}}$$
 como una sola raíz

Solución:

$$\sqrt{5\sqrt[3]{2}} = \sqrt[3]{5^3 \cdot 2} \qquad \left(5\sqrt[3]{2} = \sqrt[3]{5^3 \cdot 2}\right)$$

$$= \sqrt[3]{125 \cdot 2}$$

$$= \sqrt[3]{250}$$

$$= \sqrt[6]{250} \qquad \text{(raíz de una raíz)}$$

EJERCICIOS

- 1. Si $\sqrt{2}$ = a, $\sqrt{3}$ = b y $\sqrt{5}$ = c, entonces, ¿cuál(es) de las expresiones siguientes es (son) equivalentes a $\sqrt{60}$?
 - I. 2bc

II.
$$\sqrt{a^4b^2c^2}$$

III $\sqrt{a^2bc}$

- a) Solo I
- b) Solo II
- c) Solo III
- d) Solo I y II
- e) Solo I y III
- 2. De las siguientes afirmaciones, ¿cuál(es) es (son) verdadera(s)?
 - I. $1^8 = 8^0$
 - II. $-2 = 4^2$
 - III. $(-1)^2 \sqrt{256} = -15$
 - a) Solo I
 - b) Solo II
 - c) Solo I y II
 - d) Solo I y III
 - e) I, II y IIII
- 3. $\sqrt{32} (\sqrt{18} + \sqrt{8})$ es igual a:

 - b) $-\sqrt{2}$
 - c) $\sqrt{6}$
 - d) $-\sqrt{58}$
 - e) Ninguna de las anteriores
- 4. Al simplificar $\sqrt{\frac{75}{12}}$ se obtiene
- a) $\sqrt{\frac{5}{2}}$ b) $\frac{5}{3}$

- e) Ninguna de las anteriores

- 5. Si $a, b \in IR$, entones $\sqrt[a]{\sqrt[a]{a}\sqrt{b^{a^3}}} =$
 - a) b
 - b^3 b)
 - c) $b^{\frac{a^2}{3}}$
 - d) b_{a^3}
- 6. Si a^5 : $a^{-5} = a^{2x}$, entonces x =
- a) 0
- b) 2
- 3 c)
- d) -5
- e) 10
 - 7. $\sqrt[p]{a^{p-3} \cdot \sqrt[p]{a^{p+3}}} =$
- a) a^2
- b) $a^{p2} 9$
- c) $2 \sqrt{a^{p-3}}$
- e) 0
- Ninguna de las anteriores
 - 8. $\frac{\sqrt{15}+\sqrt{35}}{\sqrt{5}} =$
 - a) $\sqrt{10}$
 - b) $\sqrt{21}$

 - c) $\sqrt{38}$ d) $\sqrt{5} + \sqrt{5}$
 - e) $\sqrt{3} + \sqrt{7}$
 - **9**. Si $A = 4\sqrt{3}$, $B = 3\sqrt{5}$, C = 7, $D = 5\sqrt{2}$, entonces:
 - a) C > B > A > D
 - b) D > A > B > C
 - c) B > A > D > C
 - d) D > C > A > B
 - e) B > A > C > D
 - 10. Si $a=\sqrt{2}$, ¿cuál de las siguientes expresiones representa un número irracional?
 - a) $a\sqrt{2}$
 - b) $1 a^2$
 - c) a^2
 - d) (a + 1)(a 1)
 - e) $a + \sqrt{2}$

11.
$$\sqrt{57}$$
=

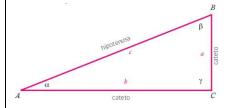
- a) $\sqrt{5}$
- b) $5\sqrt{5}$
- c) $25\sqrt{5}$
- d) $125\sqrt{5}$
- e) $625\sqrt{5}$

OBJETIVO: OA

TRIGONOMETRÍA

La trigonometría es una herramienta útil para calcular alturas y distancias inaccesibles o de difícil acceso; se aplica en diversas áreas, como por ejemplo en la topografía, en la navegación y en la astronomía.

En todo triángulo ABC, rectángulo en C, se cumple el Teorema de Pitágoras: $a^2 + b^2 = c^2$



Recuerde que una razón es la comparación por cociente entre dos cantidades. En una razón, el numerador se llama antecedente y el denominador se llama consecuente.

La razón entre a y b se anota:

$$\frac{a}{b}$$
 o $a:b$
Por ejemplo: $\frac{14}{3}$ o 14:3

RAZONES TRIGONOMÉTRICAS EN TRIÁNGULO RECTÁNGULO

En un triángulo rectángulo, se llaman razones trigonométricas a aquellas que se establecen entre las medidas de sus lados. Cada razón trigonométrica se relaciona con algunos de los ángulos agudos del

triángulo rectángulo. Las razones trigonométricas asociadas a un ángulo α son 6, se denominan:

coseno de α , seno de α , tangente de α , secante de α , cosecante de α y cotangente de α , y se abrevian:

cos α, sen α, tan α, sec α, csc α, cot α, respectivamente. Las definiciones son las siguientes:

Coseno de α

$$\cos \alpha = \frac{\text{cateto adyacente } A \alpha}{\text{hipotenusa}}$$

s<u>eno de α</u>

$$sen \alpha = \frac{cateto opuesto A \alpha}{hipotenusa}$$

Tangente de α

$$tan \alpha = \frac{cateto opuesto A \alpha}{cateto adyacente A \alpha}$$

IDENTIDADES TRIGONOMÉTRICAS INVERSAS

<u>Secante de α</u>

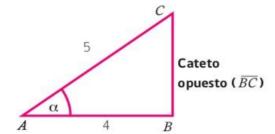
$$sec \alpha = \frac{hipotenusa}{cateto \ adyacente \ A \alpha}$$

Cosecante de α

$$csc \alpha = \frac{hipotenusa}{cateto opuesto A \alpha}$$

$$\frac{\text{Tangente de } \alpha}{\cot \alpha} = \frac{\text{cateto adyacente } A \ \alpha}{\text{cateto opuesto } A \ \alpha}$$

Ejemplo:



Para determinar la medida del cateto opuesto, utilizamos el Teorema de Pitágoras:

$$4^{2} + \overline{BC}^{2} = 5^{2}$$

$$16 + \overline{BC}^{2} = 25$$

$$\overline{BC}^{2} = 25 - 16 = 9 / \pm \sqrt{BC}$$

$$\overline{BC} = \sqrt{9} = 3$$

Al determinar las razones trigonométricas del ángulo agudo θ , se obtiene:

sen
$$\alpha = \frac{3}{5}$$

$$\cos \alpha = \frac{4}{5}$$

$$tan \alpha = \frac{3}{4}$$

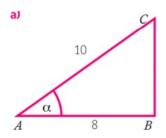
$$csc \alpha = \frac{5}{2}$$

$$\cos \alpha = \frac{4}{5}$$
 $\tan \alpha = \frac{3}{4}$ $\csc \alpha = \frac{5}{3}$ $\sec \alpha = \frac{5}{4}$ $\cot \alpha = \frac{4}{3}$

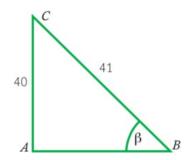
$$\cot \alpha = \frac{4}{2}$$

Ejercicios:

1. Determinar el valor de las seis razones trigonométricas del ángulo $\boldsymbol{\alpha}$



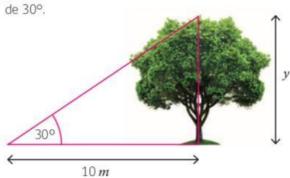
2. Determinar el valor de las seis razones trigonométricas del ángulo $\boldsymbol{\beta}$



	ÁNGULO				
RAZÓN	00	30°	45°	60°	90°
sen a	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos a	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tg a	0	1	1	$\sqrt{3}$	→ ∞

Ejemplo:

5) Calcule la altura de un árbol que a una distancia horizontal de 10 m, su copa se observa con un ángulo



Solución:

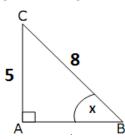
La altura y del árbol se determina utilizando la tangente de 30°:

$$tan 30^{\circ} = \frac{y}{10} \rightarrow y = 10 \cdot tan 30^{\circ} \rightarrow y = \frac{10}{\sqrt{3}} \approx 5.8 \text{m}.$$

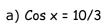
Por lo tanto la altura del árbol es 5,8 m aproximadamente.

1) El seno del ángulo x del triángulo de la figura es:

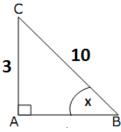
- a) Sen x = 5 / 8
- b) Sen x = 8 / 5
- c) Sen x = 1
- d) Sen x = $\sqrt{39} / 8$
- e) Sen x = $\sqrt{39} / 5$



2) El coseno del ángulo x de la figura es:

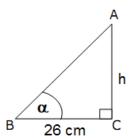


- b) $\cos x = 7/3$ c) $\cos x = \sqrt{91/10}$
- d) Cos x = 0.3
- e) $\cos x = \sqrt{91} / 3$

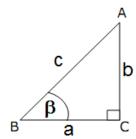


3) Si se sabe que $tan \ \alpha = 2/5 \$ entonces la medida de h es:

- a) 65 cm
- b) 52 cm
- c) 26 cm
- d) 10,4 cm
- e) 5,2 cm



4) Con respecto a la figura se afirma que:

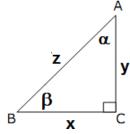


- I) Sen $\beta = c / a$
- II) Cos β = a / c
- III) Tan $\beta = b / a$

De las afirmaciones son verdaderas:

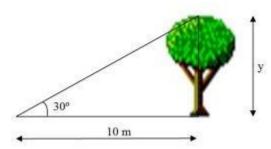
- f) Sólo I
- g) Sólo II
- h) IyII
- i) IyIII
- j) II y III

- 5) La única de las siguientes afirmaciones en relación a la figura que es falsa es:
- a) Sen $\beta = y / z$
 - b) $Cos \alpha = y / z$
 - c) Tan $\alpha = y / x$
 - d) $Cos \beta = x / z$
 - e) Sen $\alpha = x / z$



Problemas

1. Calcular la altura de un árbol que a una distancia de 10~m se ve una cima con un ángulo de elevación de 30°



- 2. Un avión se encuentra a 2300m de altura cuando comienza su descenso para aterrizar. ¿Qué distancia debe recorrer el avión antes de tocar la pista, si baja con un ángulo de depresión de 30°? Haz un dibujo del problema
- 3. Un edificio tiene una altura de 75m. ¿Qué medida tiene la sombra que proyecta cuando el sol tiene un ángulo de elevación de 45°?. Haz un dibujo del problema
- **4.** La longitud del hilo que sujeta un volantín es de 15m y el ángulo de elevación es de 30°. ¿Qué altura alcanza el cometa?
- **5.** Un hombre de 1,75 m de estatura, produce una sombra de 82 cm de longitud en el suelo ¿Cuál es el ángulo de elevación del sol? Haz un dibujo del problema

DEFINICIÓN DE LOGARITMO:

El logaritmo de un número real positivo b en base a, positiva y distinta de 1, es el número m a que se debe elevar la base para obtener dicho número.

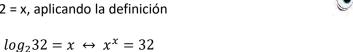
$$log_bC=n \ \leftrightarrow \ b^n=C$$

OBSERVACIONES:

- La expresión loga b = m se lee "el logaritmo de b en base a es m".
- El logaritmo es la operación inversa de la exponenciación.
- $-\log_{10} a = \log a$.

EJEMPLOS:

1) Queremos calcular log 232 = x, aplicando la definición



$$2^x = 2^5$$

$$x = 5$$

(como las bases son iguales se cancelan)

Propiedades:

Logaritmo de la unidad:	Logaritmo de la Base del	Logaritmo de una potencia:		
	sistema			
Log_b	Log_b	$Log_ba = x$		
1 = <i>x</i>	b = x	$b^x = a / n$		
$b^x = 1$	$b^x = b$	$(b^x)^n = a^n$		
$b^x = b^0$	$b^x = b^1$, ,		
x = 0	x = 1	$b^{xn} = a^n$		
$\therefore Log_b 1 = 0$	$\therefore Log_bb = 1$	$nx = Log a^n$ / en donde Log		
Por lo tanto, el logaritmo de 1 es	Por lo tanto, el logaritmo de la	$a = x$ $\therefore Log_b a = n \cdot Log_b a$		
0	base del sistema es uno	Por lo tanto, el logaritmo de una potencia es igual al producto del		
		exponente de dicha potencia por el		
		logaritmo de su base		

Ejemplo:

$$log_7 49^5 = x$$

$$5log_7 49 = x$$

$$5 \cdot 2 = 1$$

$$cog_7 49 = x$$

$$7^x = 7^2$$

$$x = 2$$

Logaritmo de una raíz: el logaritmo de una raíz es igual al logaritmo de la cantidad sub-radical, dividida por el índice de la raíz.

$$\log_b \sqrt[n]{a^m} \ \leftrightarrow \ \log_b a^{\frac{m}{n}}$$

Por el logaritmo de la potencia

$$\log_b a^{\frac{m}{n}} = \frac{m}{n} \log_b a$$

$$\log_b \sqrt[n]{a^m} = \frac{m}{n} \log_b a$$

Ejemplo

$$log_5 \sqrt[7]{625^5} = x$$

$$log_5 625 \sqrt[5]{7} = \frac{5}{7} log_5 625$$

$$\frac{5}{7} \cdot 4 = x$$

$$log_5 625 = x$$

$$5^x = 5^4$$

$$x = 4$$

$$\frac{20}{7} = x$$

Logaritmo de un producto: el logaritmo de un producto es igual a la suma de los logaritmos de los factores $log_b(p \cdot q) = log_b p + log_b q$

Ejemplo:

$$log_2 (8 \cdot 32) = log_2 8 + log_2 32$$

= 3 + 5
= 8

Logaritmo de un cuociente: el logaritmo de un cuociente es igual a la diferencia de los logaritmos del dividendo y del divisor

$$\log_b\left(\frac{p}{q}\right) = \log_b p - \log_b q$$

Ejemplo

$$\log_3\left(\frac{81}{243}\right) = \log_3 81 - \log_3 243$$

$$= 4 - 5$$

$$= -1$$

Resuelve los siguientes ejercicios

- 1. Si $\log a = x$, entonces $\log 10a$ es iqual a:
- a) 10 + a
- b) 10x
- c) 2x
- d) 1 + x
- e) X
 - 2. Si $\log p = x$, entonces $\log \sqrt[3]{p}$ es igual a:
 - a) $\sqrt[3]{x}$

 - b) $x^{\frac{1}{3}}$ c) $\frac{1}{3} x$

 - d) $\frac{3}{3}x$ e) $\frac{x}{3}$
 - 3. Si log A = m y log log B = n, entonces $log\sqrt{\frac{A}{B}}$ es igual a:
 - a) m-n

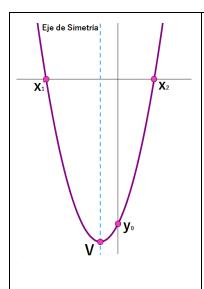
 - d) $\sqrt{m-n}$
 - e) $\frac{m}{n}$
 - 4. $log 10x^3$, es equivalente a:
 - a) $1 + 3\log x$
 - b) $3\log x$
 - c) 3
 - **d)** $\log x^{3}$
 - e) Ninguna de las anteriores

- 5. Si $\log p = q$, entonces log log p
- a)
- b) q-r
- c) $q \log r$
- d) $\log p + \log r$
- e) $q \log r$
 - 6. El $log_5\sqrt[3]{25}$ es igual a :
 - a) $\frac{3}{2}$
 - b) $\frac{-3}{2}$
 - c) -2
 - d) $\frac{2}{3}$
 - e) 2
 - 7. La afirmación incorrecta es:
 - a) $log_3 81 = 4$
 - b) $Log_5 5 = 1$
 - c) $Log_2 16 = 4$
 - d) $Log_5 25 = 4$
 - e) $log 100^3 = 6$
- 8) log₄ 64 =
 - a) 2
 - b) 3
 - c) 4
 - d) 5
 - e) 25

Gráfica de la función cuadrática

A la hora de graficar una función cuadrática debemos tener en cuenta que muchas veces puede que no sea conveniente elaborar una tabla de valores para hallar puntos pertenecientes a la función puesto que puede que dicha función no se encontrara cercana al origen del plano cartesiano o que los valores que otorguemos a la variable "x" no nos permitan determinar la forma de dicha función.

<u>Elementos principales de la función</u> <u>cuadrática</u>



Concavidad:

La concavidad corresponde a la forma que tiene la parábola que representa a la función cuadrática, la concavidad puede ser positiva cuando las ramas de la parábola se abren hacia arriba o negativa cuando se abren hacia abajo. La concavidad de una parábola se puede determinar observando el signo de "x", si

x > 0 la concavidad será positiva y si **x < 0** la concavidad será negativa.

Vértice (V):

El vértice corresponde a un punto perteneciente a la parábola el cual la divide en dos "mitades", el vértice de la parábola es considerado un <u>punto mínimo</u> cuando la concavidad es positiva puesto que es el punto más bajo de la misma y como un <u>punto máximo</u> cuando la concavidad es negativa puesto que es el punto más alto de la parábola. La fórmula para determinas las coordenadas del

vértice es: V=
$$\left(-\frac{b}{2a}; \frac{-b^2+4ac}{4a}\right)$$

Eje de simetría:

El eje de simetría es una recta que pasa por el vértice y paralela al eje de las ordenadas, el eje de simetría actúa como un "espejo", por lo que, si se conocen puntos de coordenadas pertenecientes a la parábola y su eje de simetría, basta con replicar dicha distancia al otro lado del eje de simetría y de esta manera poder dibujar la parábola de una manera más precisa. La ecuación de dicha recta es:

$$L: x = \frac{-b}{2a}$$

Intersección con el eje y (y₀):

La intersección con el eje y es el punto en donde la parábola intercepta al eje de las ordenadas, de esta manera se puede determinar muy fácilmente puesto que es aquel punto para el cual $\mathbf{x} = \mathbf{0}$, de esta manera, cuando se sustituye la x por 0 en la ecuación general se anulan los dos primeros términos de tal manera que solo queda el término independiente. Toda función cuadrática intersecta en un único punto al eje y.

$$y_{0=(0,c)}$$

Intersección con el eje x (x₁ y x₂):

La intersección con el eje x se refiere a los puntos en los cuales la parábola intercepta al eje de las abscisas, es decir, estos puntos se pueden determinar al resolver la ecuación cuadrática asociada a la parábola dado que en el eje x **y = 0**, por lo tanto, dichas soluciones se pueden determinar con cualquiera de los métodos conocidos para resolver ecuaciones cuadráticas (despeje, factorización, completación de cuadrados, fórmula general), recordemos la fórmula general:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Considerando todos los elementos anteriores es posible realizar un gráfico a mano alzada de cualquier función cuadrática determinando en cualquiera sea el caso su forma y puntos mínimos o máximos (los que cobran importancia en situaciones de análisis).

Ejemplo:

Graficar la función $f(x) = x^2 + 2x + 1$

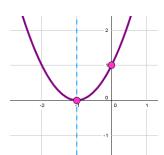
$$ightharpoonup$$
 Concavidad $ightharpoonup$ a = 1 $ightharpoonup$ positiva

Vértice
$$\left(\frac{-2}{2\cdot 1}; \frac{-2^2+4\cdot 1\cdot 1}{4a}\right)$$

(-1,0)

- > Eje de simetría: L: x = -1
- > Intersección con el eje y: $y_0 = 1$
- > Intersección con el eje x: Resolvemos la ecuación $f(x) = 0 \Rightarrow x^2 + 2x + 1 = 0$
- \succ **x = -1**, significa que intercepta al eje x, en el punto (-1,0)

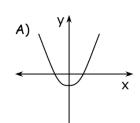
Gráfico:

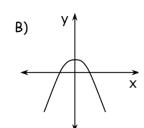


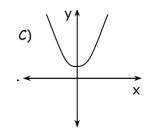
Encierra en un círculo la alternativa que consideres correcta en cada caso.

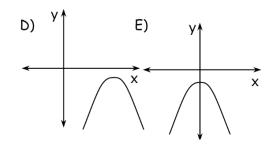
- 1) El punto que no pertenece a la función $y = x^2 + 2x + 1$
- A) (1,4)
- B) (-1,0)
- C) (0,1)
- D) (2,9)
- E) (1,1)
- 2) La gráfica de la función cuadrática $f(x) = x^2 x 6$ corta al eje x en
- A) 3 y 2
- B) -3 y 2
- C) 3 y 2
- D) -3 y -2
- E) -1 y -6
- 3) Las coordenadas del vértice del gráfico de la función $f(x) = x^2 2x + 1$ son
- A) (-1, 4)
- B) (1, 2)
- C) (-1, 1)
- D) (0, 1)
- E) (1, 0)

4) ¿Cuál de los siguientes gráficos representa mejor a la función $f(x) = -x^2 - 4$?



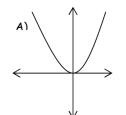


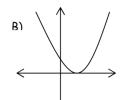


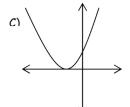


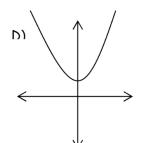
- 5) La intersección de la parábola $y = -x^2 + 4x + 12$ con el eje x es en los puntos:
- A) (6,0) y (2,0)
- B) (-6,0) y (-2,0)
- C) (-6,0) y (2,0)
- D) (0,6) y (0,-2)
- E) (6,0) y (-2,0)
 - 6) La intersección de la parábola y = $4x^2 4x 3$ con el eje y es en el punto:
- A) (-3,0)
- B) (0,3)
- C) (0,-3)
- D) (3,0)
- E) No se puede determinar
 - 7) La función $f(x) = x^2 6x + 8$ intercepta al eje y en el punto:
- A) (2, 0)
- B) (4, 0)
- C) (0, 8)
- D) (8, 0)
- E) (2, 0) y (4, 0)

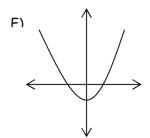
8) La gráfica que representa mejor a la función $f(x) = (X - 2)^2$ es:











9) La función $f(x)=x^2-3x-10$ intercepta el eje x en los puntos:

- A) (0, -10)
- B) (-10, 0)
- C) (-2,0) y (5,0)
- D) (0, 2) y (0, -5)
- E) (0, 0)

10) ¿En qué punto se encuentra el vértice de la función cuadrática $f(x) = x^2 - 4x + 8$?

- A) (2, 4)
- B) (4, 2)
- C) (2, 2)
- D) (2, 8)
- E) (4, 4)

11) ¿Cuál es el punto mínimo de la parábola: $y = x^2 + 4x - 5$?

- A) (2, -9)
- B) (2, 9)
- C) (-2, 9)
- D) (2,-9)
- E) (-2,18)